首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30967篇
  免费   2895篇
  国内免费   3002篇
  2024年   59篇
  2023年   657篇
  2022年   567篇
  2021年   1058篇
  2020年   1276篇
  2019年   1453篇
  2018年   1240篇
  2017年   1208篇
  2016年   1204篇
  2015年   1503篇
  2014年   1761篇
  2013年   2740篇
  2012年   1354篇
  2011年   1440篇
  2010年   1128篇
  2009年   1682篇
  2008年   1713篇
  2007年   1716篇
  2006年   1561篇
  2005年   1273篇
  2004年   1180篇
  2003年   993篇
  2002年   846篇
  2001年   747篇
  2000年   660篇
  1999年   572篇
  1998年   493篇
  1997年   525篇
  1996年   427篇
  1995年   397篇
  1994年   366篇
  1993年   378篇
  1992年   308篇
  1991年   268篇
  1990年   227篇
  1989年   230篇
  1988年   185篇
  1987年   172篇
  1986年   163篇
  1985年   198篇
  1984年   161篇
  1983年   124篇
  1982年   138篇
  1981年   118篇
  1980年   112篇
  1979年   77篇
  1978年   60篇
  1977年   46篇
  1976年   37篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
《Developmental cell》2022,57(3):361-372.e5
  1. Download : Download high-res image (176KB)
  2. Download : Download full-size image
  相似文献   
72.
《Developmental cell》2022,57(5):638-653.e5
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   
73.
74.
The cantilever sensor, which acts as a transducer of reactions between model bacterial cell wall matrix immobilized on its surface and antibiotic drugs in solution, has shown considerable potential in biochemical sensing applications with unprecedented sensitivity and specificity1-5. The drug-target interactions generate surface stress, causing the cantilever to bend, and the signal can be analyzed optically when it is illuminated by a laser. The change in surface stress measured with nano-scale precision allows disruptions of the biomechanics of model bacterial cell wall targets to be tracked in real time. Despite offering considerable advantages, multiple cantilever sensor arrays have never been applied in quantifying drug-target binding interactions.Here, we report on the use of silicon multiple cantilever arrays coated with alkanethiol self-assembled monolayers mimicking bacterial cell wall matrix to quantitatively study antibiotic binding interactions. To understand the impact of vancomycin on the mechanics of bacterial cell wall structures1,6,7. We developed a new model1 which proposes that cantilever bending can be described by two independent factors; i) namely a chemical factor, which is given by a classical Langmuir adsorption isotherm, from which we calculate the thermodynamic equilibrium dissociation constant (Kd) and ii) a geometrical factor, essentially a measure of how bacterial peptide receptors are distributed on the cantilever surface. The surface distribution of peptide receptors (p) is used to investigate the dependence of geometry and ligand loading. It is shown that a threshold value of p ~10% is critical to sensing applications. Below which there is no detectable bending signal while above this value, the bending signal increases almost linearly, revealing that stress is a product of a local chemical binding factor and a geometrical factor combined by the mechanical connectivity of reacted regions and provides a new paradigm for design of powerful agents to combat superbug infections.  相似文献   
75.
The structure of detoxin D1, one of the main active principles of detoxio complex, has been established on the basis of the degradative studies and spectral evidences as depicted in formula (I).

Detoxin D1 has been demonstrated to belong to a new class of the depsipeptide contained an amino acid designated detoxinine which was newly isolated as a natural product.  相似文献   
76.
The sex pheromone produced by adult females of the potato tuberworm moth was isolated from unmated female moths reared in the laboratory. The gas Chromatographic and mass spectrometric data suggested the pheromone to be a tridecatrienyl acetate. The isolated pheromone was subjected to partial hydrogenation with hydrazine and hydrogen peroxide and subsequent ozonolysis to produce a mixture of ω-acetoxy-alkanals. They were identified by mass Chromatographic technique as 4-acetoxy-butanal, 7-acetoxy-heptanal, and 10-acetoxy-decanal respectively. Consequently, the pheromone was identified as 4,7,10-tridecatrienyl acetate except the geometric configuration.  相似文献   
77.
Farrant  Jill M. 《Plant Ecology》2000,151(1):29-39
The mechanisms of protection against mechanical and oxidative stress were identified and compared in the angiosperm resurrection plants Craterostigma wilmsii, Myrothamnus flabellifolius and Xerophyta humilis. Drying-induced ultrastructural changes within mesophyll cells were followed to gain an understanding of the mechanisms of mechanical stabilisation. In all three species, water filled vacuoles present in hydrated cells were replaced by several smaller vacuoles filled with non-aqueous substances. In X. humilis, these occupied a large proportion of the cytoplasm, preventing plasmalemma withdrawal and cell wall collapse. In C. wilmsii, vacuoles were small but extensive cell wall folding occurred to prevent plasmalemma withdrawal. In M. flabellifolius, some degree of vacuolation and wall folding occurred, but neither were sufficient to prevent plasmalemma withdrawal. This membrane was not ruptured, possibly due to membrane repair at plasmodesmata junctions where tearing might have occurred. In addition, the extra-cytoplasmic compartment appeared to contain material (possibly similar to that in vacuoles) which could facilitate stabilisation of dry cells.Photosynthesis and respiration are particularly susceptible to oxidative stress during drying. Photosynthesis ceased at high water contents and it is proposed that a controlled shut down of this metabolism occurred in order to minimise the potential for photo-oxidation. The mechanisms whereby this was achieved varied among the species. In X. humilis, chlorophyll was degraded and thylakoid membranes dismantled during drying. In both C. wilmsii and M. flabellifolius, chlorophyll was retained, but photosynthesis was stopped due to chlorophyll shading from leaf folding and anthocyanin accumulation. Furthermore, in M. flabellifolius thylakoid membranes became unstacked during drying. All species continued respiration during drying to 10% relative water content, which is proposed to be necessary for energy to establish protection mechanisms. Activity of antioxidant enzymes increased during drying and remained high at low water contents in all species, ameliorating free radical damage from both photosynthesis and respiration. The nature and extent of antioxidant upregulation varied among the species. In C. wilmsii, only ascorbate peroxidise activity increased, but in M. flabellifolius and X. humilis ascorbate peroxidise, glutathione reductase and superoxide dismutase activity increased, to various extents, during drying. Anthocyanins accumulated in all species but this was more extensive in the homoiochlorophyllous types, possibly for protection against photo-oxidation.  相似文献   
78.
79.
Heat stress reduces maize yield and several lines of evidence suggest that the heat lability of maize endosperm ADP-glucose pyrophosphorylase (AGPase) contributes to this yield loss. AGPase catalyzes a rate-limiting step in starch synthesis. Herein, we present a novel maize endosperm AGPase small subunit variant, termed BT2-TI that harbors a single amino acid change of residue 462 from threonine to isoleucine. The mutant was isolated by random mutagenesis and heterologous expression in a bacterial system. BT2-TI exhibits enhanced heat stability compared to wildtype maize endosperm AGPase.The TI mutation was placed into another heat-stable small subunit variant, MP. MP is composed of sequences from the maize endosperm and the potato tuber small subunit. The MP-TI small subunit variant exhibited greater heat stability than did MP. Characterization of heat stability as well as kinetic and allosteric properties suggests that MP-TI may lead to increased starch yield when expressed in monocot endosperms.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号